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ABSTRACT

Fluid whirl and fluid whip are rotor self---excited,lateralvibrationswhich occur due to rotor

interactionswith the surrounding fluid. There existvariousmodes of fluidwhirland fluidwhip.

These modes are close to rotor modes corresponding to free vibrations (based on the linear

model). Small differencesare due to nonlinearitiesin the system. This paper presents

experimental and analyticalresultson the lowest modes of fluidwhirl and fluidwhip. Examples

of rotorssupported in fluidlubricatedbearingsshow the variationsof rotor deflectionamplitudes

and phases in the whirl and whip modes with changes Of rotative speeds and/or changes in
lumped mass locationsalong the shaft.

I. INTRODUCTION

Dynamic phenomena induced by interactionbetween the rotorand the surrounding fluid,such as

occur in fluid--lubricatedbearingsand sealsof fluid--handlingmachines, have been recognizedfor

over 60 years. The resulting rotor lateralself--excitedvibrations, usually occurrin¢ at
subsynchronous frequencies, are known as " " " . . "

flmd (od,..) whirl, fluid (aerodynamic, steam,..)
whip," or simply "rotor instability." The rotor precessionaldirection of these self--excited

vibrationsis always forward. Most of the existingliteraturehave documented occurrences of

these phenomena in low ranges of rotativespeeds [1---6].Classicalliteratureon fluid--lubrlcated

bearings,which concentrateson lubricationproblems rather than rotor instabilities,reportsonly

occurrences of whirl vibrationsof rigidrotors. References on rotor instabilitydue to dynamic

phenomena occurring in scalareport whip type of vibrationsonly. This leads to an unjustified

beliefthat the whirl and whip phenomena may occur only in dissimilar,uncomparable systems,and are due to differentcauses.

When the rotating shaft and surrounding fluid involved in motion are considered, however, as
one system, it is evident that vibration modes interact. If the fluid--induced, self--excited

vibrations of the rotor occur at relatively low rotative speed, the shaft would vibrate as either

rigid body (whirl), or at its first lateral mode [7]. With an increase in rotative speed, there is a

smooth transition from the whirl to whip of the first mode. It is obvious that both these

phenomena are generated by the same source, and thus can be modeled by one algorithm. At

higher rotative speed, higher mode whirl or whip vibrations may be induced [8,9]. The roods]

approach in rotor system modeling allows for clear interpretation of the occurring vibrationalphenomena.

This paper isa continuationof the seriesof papers [7--11] on applicationsof the improved model

of the fluid force for lightlyradiallyloaded shaftsrotating in a fluidenvironment. Following

Bolotin [12] and Black [13,14],the fluid force model is based on the strength of the

circumferentialflow generated mainly by the shaft rotation [15]. This model can be used for

lightlyradiallyloaded bearings,as well as seals(with or without preswirlsand/or injections).

The fluidforcemodel, identifiedexperimentallyby using physicalperturbationtechniques [16,17]

and the modal approach in modeling, allow for more adequate prediction of rotor stability
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thresholds, and evaluation of the post--stability fluid-induced rotor lateral limit cycle
self--excited vibration parameters (whirl and whip).

Using the multi-mode modal approach [S, 17], the linearised rotor system eigenvalue problem is
0olved, and approximate values of natural frequencies and thresholds of stability are given. It is
shown that there exist fluid--generated natural frequencies of the system, and the corresponding

sequence of modes. The nonlinear model allows for calculation of the after-threshold, self--
excited vibration parameten, including modes of vibration.

.
MATHEMATICAL MODEL OF A TWO-MODE ROTOR WITH ONE SOURCE OF

INSTABILITY

Two physical modeh of rotors on which mathematical models are the same wiU be discussed in
this section. In both cases the rotors carry one source of fluid--induced instability.

Consider a balanced isotropic rotor of a fluid--handling machine supported by two rigid bearings.
The rotor rotates concentrically in a seal located at the axial section "S" (Fig. la). Consider a

balanced isotropic rotor rotating concentrically in one fluid--lubricated and one rigid bearing

(Fig. !b). When u_ing the multi--mode modal approach (mode summation), the mathematical
model of the rotor, in both cas_, is u follows:

MI_I + Dtll + (Kt+K2)sl-- K2s2 = 0

M2112 + D212 + (K2+K3)s2--K2sl--K3s3 - 0
(I)

D(iy-jAfls3)+ (KB+K3+K4)s3 + s3_(I'-3[)--K3s2 = 0

si(t)= xi(t)+ jyi(t), i=1,2,3, [s3l= _/x_+ y_, j=_r:_, • = d/dt

where xi, Yi are rotor horlsontal and vertical displacements, M1, M2, KI, K2, K3, K4, DI, D2 are
two-mode rotor modal masses, stiffnesses, and external damping coefficients, respectively (in case
of the fluid-lubricated bearing, the stiffness K4 either equals zero or represents an external

supporting spring (Fig. lb)). D, KB, A are seal or bearing fluid ra_lial damping, radial stiffness
and circumferential average velocity ratio, respectively, _ is fluid nonlinear stiffness function of

radial displacement, f/ is rotative speed, t is time.

For clarity of presentation, the unbalance forces, radial slde-load forces, external cross damping,
fluid inertia effect, and other nonlinear functions are omitted in the model.

(a)

l 2

Fig. I

(b)

1
Physicalmodelsofrotors:(a)rotor/seal system,(b)rotor/beating system.
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2.1 Ei_envalue Problem: Natural Fr.equencies,Thresholds of Stability

The eigenvalue problem for the linearisedEqs. (1) (that is,when _-0) provides the following
characteristicequation:

(RIR_--K_)[jD(w-Af)) + KB q.K3 + K4] -- K_RI - 0 (2)
where

Ri = Ki + Ki,l + j_Di --Mi_ 2, i=1,2 43)

are rotor partialcomplex dynamic stiffnessesand w isthe complex eigenvalue. Eq. (2) can

certainlybe solved numerically for specificparameter values. It is the author's intention,
however, to show specificqualitativefeaturesofthisequation solution.

The splitof Eq. (2) into realand imaginary parts provides the followingequations:

DW(W--An)(tClD2+IC2DI) --(I¢ItC2"K_-'w2D ID2)(KB+K3+K4) -{-K_t¢l- 0 (4)

D(W'Af])(_CltC_'-K_--CO2DID_)+ W(IClD2+tC2DI)(KB+K3+K4) --K_D! --0 (5)

where tel,I¢2 are direct dynamic stiffnesses,that is the real parts of the complex dynamic

stiffnessee(3). The approximate values of the system natural frequencies(realparts of w ) can

be calculatedfrom Eq. 45). With damping Di assumed of the second order of smallneu the

sero---th approximation establishes Wl _ A_, w2,...,5 _ +tOni, i--1,2. The first approximation
provides more accurate relationships:

FLUID WHIRL FREQUENCY - wl _ Af/ [I --

DI ,[K2+K _--M 2A _n2+(KI+K 2-MI A 2f/2)D2/DI }(KB+K3+K 4)-K_

-- D[(KI+K2-MIA2f/2)(K_+K3-M2A2[_2) -K_ - A2_2DID_]]

FLUID WHIP FREQUENCIES : aJ2,3 _ Wni --

(6)

-- (--1)iD! [K2+K_-M2Wn2i+(K l+K2-M ! Wn2 i)D2/D l ] (KB+K3+K4)_.K, _
2D(_n i--A|| ) M iM2(Wn22-Wn_t) , i-1,2 (7)

REVERSE MODE FREQUENCIES --W4,5 _--Wnl, n2
(8)

where Wnl, Wn2 are solutionsof the rotorpartialcharacteristicequation I¢I/¢_ --K_ - 0:

I-._-_-_ _ +(_l)i/I _ K2+K312 K_ Jl/2a)ni= L 2MI + 2M2 L 2MI "2M2 J + i:I,2 (9)MI M2

The approximation (7) cannot be applied for the value f_=c_i/A, thus this case should be
calculated using Eq. (6).

The fluid whirl frequency wl is almost a linear function of the rotative speed. The fluid whip

frequencies W2,S are independent from the rotative speed. At the crossing of wl with w2 and w3
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in the plane (f/,Wi), i--I,2,3,the straightlinesdegenerate intohyperbolas (Fig.2), resultingin a

smooth transitionsfrom the whirl-to-whip and whip--to--whirlmodes.

u
Z

O

Z

0J

_n_

OJn!

r

O ROTATIVE SPEED

Fig. 2 Natural frequencies versus rotative speed.

Eq. (4) provides the approximate values for stabilitythresholds.For the whirl onset, td in Eq.

(4) is substitutedby AI_ST (the sero---thapproximation (6) with DI=D2=0). The resulting

quadratic equation for _/_T establishes:

[KI+K2 K2 K:}(KB+K 4 )

_/STif_L 2Ml + 2-M2 + 2M2(K3+KB+K4) +

K2+ (--I)i [ 2M ! 2M2
K3(KB+K4) ]2

2M 2 (K 3+KB+K4)J K_ ] 112,+ MiM2
i=1,2 (10)

There exist, therefore, two instability onsets leading to the fluid whirl instability. For the whip

c¢_ations, td in Eq. (4) issubstitutedby Wni, i=1,2 (the _ero--thapproximation (7) with DI =

D2 = 0), and f/ issubstitutedby nST i.2:

+ KI "
DwnI[D2+D l(K _+K3-M 2a.,'ni2)2/K_]|

J

, i=1,2 (11)

Note that all stability thresholds are inversely proportionM to the fluid circumferential velocity

ratio )_ . The onsets (10) do not depend on damping, while the cessations (11) do: larger

damping, lowers the cessation rotatlve speed, thus narrowing the range where the instability

occurs. Practically, the cessations seldom occur at rotative speeds (11), because the rotor is

alreazly in the elf--exclted vibration condition, and the system parameters differ from the linear

ones. (The first order approximation (11) does not show dependence on KB, thus no

dependence on _ ; it is necessary to consider higher approximations).

In the rotor/seal system case, the fluid radial stiffness K B is usually smaller than the stiffness K4,
thus the third term in Eq. (10), and the third term under the radical in Eq. (10), are

approximately the stiffnemes of the rotor right portion, combined by two elements in sequence:

K3Ki/(K3+K4) (Fig. la). The expressions in large parentheses of Eq. (10) represent, therefore,
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the natural frequencies of the entire shaft. The stability onset expressed as the 1/_ fraction of
the natural frequency (which for the most often used value A=0.5 equals 2) is well known in

rotor/seal dynamics. At the rotative speed as high as double the first natural frequency, only
whip type of instability may occur. That is why very often only whip, and no whirl vibrations,

are associated to rotor/seal dynamics. As Eq. (10) indicates, however, the multiplier 1/_ is not
necessarily equal to 2 (which it very seldom is), but depends on the actual circumferential flow

conditions in the seal. Swirl brakes or anti--swirl injections can significantly modify _ [11].
Additionally, the fluid radial stiffness may modify the instability onset (I0): the larger KB, the

higher the instability onset. (A larger fluid radial stiffness results, for instance, from a higher

external pressure of the fluid.) The onset (10) also depends on the location of the seal along the

rotor, thus on the values of stiffnesses K3 and K4.* The highest values of the onsets (I0) occur

where the stiffnessK3 isequal to K B + K4, that is,when the sealislocatedapproximately in the

middle between the second modal mass and the right-sidebearing.

The function fl = t_lt_2 -- K_, which provides the whip frequencies aTni, Eq. (9), and the

functions f2 = (t_l_2--- K_)/t_h f3 -- K_/(KB+K3+K4), which provide onsets of instability, Eq.

(10), can be investigated graphically in the plane (0J2, fv), //=-1,2,3. The result is presented in
Figure 3. The instability onsets can be found on intersections of the hyperbola f2 and the

straight line f3 • Now it is easy to discuss the effect of the stiffnesses K3, K4, K B on the

instability onsets. If the stiffness K4 is low (rotor/bearing model), then the line f3 is higher, and
the resulting stabilityonsets occur at lower rotative speeds, thus, very often in the whirl

instabilityrange. An increaseof the stiffnessK 3 (mass M2 closerto the instabilitysource)

results,again,in a decrease of the instabilityonset. An increaseof the fluidradialstiffnessK B

provides a stabilityimprovement by moving the instabilityonsets toward higher rotativespeeds.

In allcases,however, the onsetsoccur at the speeds nST i which are lower than _ni/A, i-I,2.

Fig. 3

K3+K4+KB

/

\ , /

Graphical solution of Eqs. (4) and (5) showing whip frequencies (9) and onsets of

instability (10).

*In this study the seal location is chosez outside the modal masses; a similar analysis Can be

performed for a case where the seal is located between the modal masses, that is being closer to
the second mode nodal point.

281



2,2 P_otor Mode_

The complex modal functionsthat are calculatedfrom the linearpart of Eqs. (I) are as follows:

1,  2v= 1+ KI÷DIj -M w2 Ks(KI+K2+D jw--M w )
K2 ' = K2[Dj ( t_-A_])-t-KB +Z 3-t'K4] (12)

Using the natural frequencies (6) and (7), the approximate modal functions at stability
thresholds are obtained. The modal functions of the first and second mode whirls are as follows:

' KB+K3+K 4 '

where

I [Kl +I-- M---I -- K_M,(KB+K4) ]_=- K2 M2 K2M2 (KB+K 3+K4 )

i=i,2 (13)

The modal functions of the first and second mode whips are as follows:

w

_Ii,2 = I, _)2i,2 _ 1 + K! -- M|Wn2i
K2

_2t,2K_ --J KB+K 3+K 4
_3i+2 _ e

q(KB-I-K3+K4) 2 + D2(Wni--AI|STi,2) _

D(Wn i-AnST i.2)

, i=1,2 (14)

where wni are given by Eq. (7) and fiST i'2 by Eq. (11).

During the whirl of the first mode, the entire shaft vibrates in phase. During the second mode

whirl, the modal masses MI, M2 are 180" out of phase (when damping is neglected). During the

first and second mode whips, two rotor masses vibrate in phase, and 180" out of phase,

respectively, but the seal location leads the vibration of the second mass by an angle which
depends on the system parameters (Eq. (14)).

2.3 _elf--Excited Vibrations

After the onsets of instability, the rotor self--excited vibrations occur. Eqs. (i) have exact
periodic solutions of the circular form:

2ej( A3e jwtsl = AI ej(wt'i'ol) , s2 - A a)t-1-_2) , s$ - (15)

with frequency (or frequencies) a7 , and corresponding amplitudes Ai , and phases _i , i=1,2

relative to the phase of the fluid instability source location. Eqs. (15) describe rotor self-excited

vibrations, known as whirl and whip. They occur as steady--state limit cycles after the onsets of
instability and some transient process.

The frequencies, amplitudes, and phases of Eqs. (15) can be calculated from the set of nonlinear

algebraic equations obtained by substituting (15) into Eqs. (I), and dividing all terms by e j_.



Note that the argument of the only nonlinear function _ becomes now A3. The final algebraic

equations are as follows:

d,_t [K_wD |-D(t_--_n) (/_ 1K2-K_-_72D ID 2) 1
- KB- K3- K4/

A3 -- v" L 0J( _;ID2+_;2D t) J
(16)

where Ri, _;i, i=1,2 are dynamic stiffnesses (3) and their real parts, respectively, and _-t denotes

the inverse function _. The frequency _0 in Eq. (16) should be substituted by the frequencies

obtained from the equation which differs from the characteristic equation (2) only by one

nonlinear term. The approximate values for the self-excited vibration frequencies are, therefore,

very close to the fluid whirl and whip frequencies. In Eqs. (6) and (7) the fluid radial stiffness

Ke should read [KB+_b(A)]. Since the second terms in Eqs. (6) and (7) are proportional to

rotor damping, and thus are relatively small, the above-discussed nonlinear function adjustment
will, therefore, bring very little change to the approximate frequencies (6), (7). The reverse mode

frequencies (8) do not satisfy Eq. (16).

For the whip frequencies _ = tt,'ni or W = Wn2, the denominators of Eqs. (17) are controlled only

by damping, thus, independent]y of the amplitude A3 , the rotor with masses M t, M2 is in
"resonant" conditions corresponding to its two lateral modes.

It is easy to show that for the first mode whirl and whip frequencies, the phase angles al and

a2 are negative, thus the mass locations are lagging the instability source at the bearing or seal.

For the second mode, the phase lag also occurs additionally to the relative 180" phase change of
the modal mass locations. The instability source phase leading of the whirl or whip vibrations is

well recognized in the field, and has become the basis of the identification method for the

instability source axial location on machinery trains [18].

3. MULTI--MODE ROTOR WITH ONE SOURCE OF INSTABILITY

An analysis similar to that presented in the previous chapter can be performed

multi-mode rotor (Fig. 4). The rotor characteristic equation now has the following form:

where

for the

[Dj(_--_fl) + KB + Zn,l + Kn]g -- Kg__ = 0

gn-2 -
I( _2

Z -3
gn-3-

gn-4-
K_-4

g3
K|

R2
gl

(_8)
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and

Ri = Ki + Ki+l + ju]D i -- Miw2, i=1,...,n--2

are rotor partial complex dynamic stiffnesses. The stiffness R represents the dynamic stiffness of

the rotor, except its last section at the right side (Fig. 4). The real part of R, when equalized to
sero, will provide the sero--th approximation to whip frequencies _ _ _ni, i=l,...,n'2.

• o.. -l Kn

I 2 VZn_2 Zn-I

Fig. 4 Multi--mode rotor/bearinK/sea 1 model.

The sero--th approximation to the whirl frequency is still _ _ An. The further terms in

approximations to whirl and whip frequencies, which can be calculated from the imaginary part
of Eq. (18), are proportional to the external damping, and except for the regions when _ -Wni/_, they are small.

Similarly to Eq. (4), the real part of Eq. (IS) provides the stability thresholds.

The corresponding graphical analysis that is discussed in Section 2.1 can also be performed for

Eq. (18). The result indicates virtually the same features: the instability onsets occur at rotative

speeds lower than 1/,_ fraction of natural frequencies, and can be controlled by the similar
parameters, namely, A, Kn-l, Kn, and K B.

4. EXPERIMENTAL RESULTS

4.1 _Exverimental Ri_

The experimental rotor, which was made of steel, consisted of a 0.375" diameter shaft with two

disks of the mass 4.637 x 10"3 lb.s2/i n (inboard) and 4.643 x 10-3 lb.s2/in (outboard). The rotor

was supported inboard by a relatively rigid sliding bearing bushing, and outboard by 8, 360"
oil--lubricated, cylindrical bearing with 1.5" diameter and 6--rail radial clearance. The lubricant

was T10 oil with 5 psi inlet pressure. The rotor was driven by 0.5 hp electric motor through a
flexible coupling. Four orthogonal springs supported the outboard end of the shaft, in order to

maintain concentric position of the journal inside the bearing at rest. The rotor carried someamount of unbalance.

The sets of XY proximity transducers were located at the fluid--lubricated bearing and at four

other axial locations of the shaft (Figs. 5 and 6). The vibrational data from these transducers, as
well as from the Keyphasor ® (once per rotation pulse) transducer, were Collected by the
computerised data acquisition and processing system.

4.2

Two cases *vith different positions of the disks on the shaft were investigated (Figs. 5 and 6).

The rotor vibrational responses at specific rotative speeds were filtered to whirl or to whip
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frequencies. The artificial Keyphasor marker positions were used to plot rotor centerline
deflections for particular modes (Figs. 5 and 6). Figures 7 to 10 present the spectrum cascade
plots during the rotor start--up. They exhibit synchronous (lx) unbalance--related vibrations

and high rotor subsynchronous vibrations of the first and second mode whirl and of the whip
type. Moving the disks toward the rotor midspan (case 2) resulted in a lowering the first natural

frequency, and increasing the second one as compared with case 1. The first onset of instability
occurred higher in case 2, but the second one occurred at a lower rotative speed. In both
considered cases, rotor first mode whip vibration amplitudes were much higher than in the whirl
modes. In both cases, the whip cessations occurred simultaneously with the second mode whirl
onsets, but this is not a rule for other systems [9].

_-_---- 4.25"
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4.50"= q

1VD

.8125"

1HD

FIRST MODE WHIRL:

................... .: .......... '_. :._:-._:_ : .._; L.:__:_:.:.,.,.:_....I

fl = 2500 rpm, wl = 1200 cpm

l

1
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Fig. 6 Rotor sketch and rotor modal centerlines at the first and second mode whirl and at whip

at specific rotative speeds. The orbits are filtered to whirl or whip frequencies Wi, i=1,2.
Orbit scale: 5 rnil/div. Case 2: disks close to mid-span.
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The modal parameter ratiosas functionsof the square root of mass ratiocalculatedfrom Eqs.

(20) are presented in Figure 11. Since the modal parameter ratiosmust be positive,there exist

limitedranges of mass ratioswhich satisfythis condition. It can be seen in Figure 11 that for

caae I: 1.92 </z < 10.8,and forcase 2: 1.98 < _ < 19.9.

Perturbation testing should provide more reliable identification data [17].

/

J /

2 3 40 1 SQUARE ROOT OF MODAL MASS RATIO

Fig. 11 Rotor modal parameter ratios as functions of the square foot of modal mass ratio.

NOTATION

Ai,_i

D,KB

si,[si[

Di,Mi

Ki

i,p

J=4- 
t

xi,Yt

Amplitudes and phases of rotor self-

excited vibrations, respectively

Fluid radial damping and radial

stiffness, respectively

Rotor complex lateral displacements
and thek absolute values

Rotor modal damping coefficients

and modal masses, respectively
Rotor modal stiffnesses

Integers

Time

Rotor horizontal and vertical

displacements, respectively

Ri,/_i

A

u/

uJi

fl

fiST i

Rotor complex dynamic stiffnesses

and their real parts, respectively

Fluid circumferential average

velocityratio
Modal mass ratio

Rotor complex modal functions

Fluid nonlinear stiffness function

Complex eigenvalue; also

self-excited vibration frequency

Approximate natural frequencies of

the rotor system

Rotor natural frequencies

Rotative speed

Thresholds of stability
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During whip conditions the whip frequency filtered orbits are elliptical, reflecting rotor system
anisotroplc features. During whirl conditions the orbits are circular (except the first-mode whirl

in case 2), and much smaller than at whips (Figs. 5, 6). There exist higher harmonic and
combinational components in the spectra (Figs. 7 to 10), especially when amplitudes of whip

vibrations are high (Figs. 7, 8) causing involvement of geometric nonlinearities.

The first instability onset in case 2 (Figs. 9, 10) occurs at relatively high rotative speeds in the

range of the transition to whip rather than at whirl, ms in case 1 (Figs. 7, 8). The phases and

amplitudes of these self-excited vibrations change considerably just after the onset: first the
horizontal amplitudes are large, then, at higher rotative speed, in whip conditions, the vertical

amplitudes become dominant (Fig. 9).

4.3 Identification of Rotor Modal Parameters From Experimental Results

In this section a method of partial (incomplete) identification of the rotor two-mode modal

parameters will be outlined. This method does not pretend to be general; the identification
results show only that the modal modelling is feasible, simple, and reflects major dynamic

features of the rotor behavior.

The data for identification is taken from the start-up runs (Figs. 7 to 10): rotor natural

frequencies of the first two modes, tdnl, Wn2, and the onsets of instability for the first and second

mode whirls, {'/ST I, {'/ST2" From Eqs. (9) and (I0), the rotor parameters are calculated as

follows:

M2
K----t= b# K2
M2 " M22

(20)

_I+ w_2-b K2M2= - M-22'
K_ltY__= K_.!

M2 M2

where

b _.

I K3/M2 112 2 2 2Lo.,n;+_n2-A(asz ,+o+.r2)

Ml_2 1_n22_ _, f_ _f_ 2 #! M2
+ 2-A2(f Tt+f_T2)

Since there are only four equations, (9) and (10), and seven unknown

stiffness-to-mass ratios are expressed as functions of the modal mass ratio /_.

parameters, the

The data for the cases 1 and 2 are given in Table 1.

TABLE 1. Experimental Data

Case 1

Case 2

Wnl Vn2 flSTI fiST2 A

rpm

1677 5200 2000 8800 t0,48

1400 6300 2500 8000 0.48
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